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A number of papers by myself and (both jointly and independently) by Pierre 
Noyes have made use of the concepts of total attribute distance, the finite exponen- 
tiation operator, and the transport operator. Each of these depend on a method 
of counting that is unfamiliar to most readers. Inasmuch as the papers have gen- 
erally been couched in terms of bit strings and the original explanation of these 
concepts was not elucidated in terms of bit string exemplars, the reader has been 
left with an undue burden of interpreting a difficult and new conceptual basis for 
counting as presented in the ordering operator calculus. In some cases, our efforts 
have contained errors which created a further muddle. 

It is my intent in this note to correct the problem, an obligation which I have 
too long and unintentionally avoided. I wish to point out from the beginning 
that the original reference was never intended to explain the issues which have 
risen from applications of the ordering operator calculus. Instead, a “Foundations 
II” paper has been long planned and was intended to treat the concepts of (1) 
“non-Euclidean” d-spaces-the definition of a metric introduced in Foundations is 
positive definite, an unnecessary and generally untrue restriction in non-Euclidean 
spaces; (2) a mathematical mechanics for dealing with the interactions of ordering 
operators-this is essential for a thorough understanding of my derivation of the 
fine structure constant and related problems; and (3) a more general exposition of 
the relationship between a model of a system and its representation. 

Within the current context, this last item is most important. In general, there 
are always two ways to express context information which will preserve the statis- 
tics of a given model. This first is the most difficult part of the ordering operator 
calculus to keep in mind-the interpretation of the symbols is context sensitive. 
A context sensitive mathematics has been generally abhorred in both the mathe- 
matical and the scientific communities: I hope to show that it has its uses. The 
second way of expressing context information is to invest a separate symbol for 
each specific context, under the assumption that the semantics is separable from 
the syntax. The ordering operator calculus allows this only under the conditions 
set out by the Separability Lemma. 

A significant aspect of the ordering operator calculus is the modeling method- 
ology. A major concern of mine in developing the calculus was to be able to build 
two arbitrary and not necessarily complete representations of a given system in a 
common language and then to express the degree to which information preserving 
transformations will be of unequal representational power-one of the systems will 
not be rich enough to express all the concepts expressible in the other. This leads 
to the concept of hidden information. 

Understanding hidden information is a good thing: it shows how new infor- 
mation can arise between the interaction of two systems. This is especially true 

36 



in terms of the statistics of the interaction, as we shall see below. In fact, the 
combinatorial hierarchy itself is best understood in these terms from my point-of- 
view-there is a model of an underlying generation scheme characterized by the 
sequence 3, 7, 127, . . . and there is the model of a vector space by which this gener- 
ation is to be represented. The interaction between the two gives certain statistics 
and provides a “stop rule” for the combinatorial hierarchy. 

Now to the subject at hand. I will not try to relate this treatment to physics-I 
leave that for my colleagues. Nonetheless I will speak in terms of bit strings with 
the hope that the topic will be clearer and that translation into useful physics will 
be easier. 

First consider the population of binary bit strings of size N composed of the 
symbols 1 and #. Each 1 in these strings will represent the occurrence of one 
distinct event or object which belongs to a certain equivalence class of such events 
or objects (I will use event forthwith to conserve space and typing). Each # 
represents a non-event. This is different from saying that # represents a non- 
occurrence. Each # conveys no information whatsoever about the event-it only 
holds a place where such an event might have occurred, but did not as far as we 
know. Thus the “event” is unknown, and we cannot say that it is the complement 
of a 1 type event (l-event for short). The # just pads each string of Ic l’s to size 
N, their position being unimportant. The l-type equivalence class will be said 
to contain P (or Q) distinct events-this is called the number of increments I in 
Foundations. 

Suppose that each l-event is labeled to designate its distinctness in the equiv- 
alence class. A common way to do this is to use ordinal labels and create the bit 
string so that the ordinal labels are in ascending order positionally right-to-left. 

When the bit strings are created by sampling from the equivalence class without 
replacement, we can drop the labels and simply use the ordinal position as an 
implied label. Then we need some place holder for positions, that are never filled 
unless the sampling is exhaustive or the size of the sample Ic is less than p . If, 
however, we allow for sampling with replacement, the labels cannot be dropped if 
we are to distinguish strings. 

Suppose we ask how many strings can be generated by sampling the l-events 
with replacement subject to the constraint that the resultant strings each contain 
k 1’s. Since the # symbols do not convey information with which we are interested 
for the moment, they can be ignored-dropped from the string altogether: what 
matters to us is the size of the sample k and the size of the equivalence class. 

(14#131211#) = (14131211) . (1) 
Then, for a bit string containing k l’s, the number of bit strings possible is just 
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R(N, k, P): 

R(N, k, P) = P’ . (2) 

Now suppose that we have reasons to believe that those #‘s are important. There 
are two statistics that can be given immediately: the number of permutations and 
the number of combinations. 

Consider the number of combinations C(N, k) of k l’s in a string of size N. 
C(N, k) is just th e number of distinguishable strings where the occurrence of #‘s 
matters, but the l-events are not themselves labeled. The idea there is that it is 
the context of a l-event in relation to the #‘s and other l-events that serves to 
identify it as a specific member of the equivalence class. Thus, if 1’ is an artificial 
label to distinguish it from 1 strictly for purposes of illustration, then: 

(l#l’) = (l’#l) # (#l’l) = (#ll’) (3) 

where # means “is not identical to”. The point here is that a l-event in a specific 
context is unique and a distinct member of the equivalence class. So permutat- 
ing l-events only serves to change their identity-it does not generate a string 
distinguishable from the original string. 

Under this interpretation, the number of distinguishable strings is just C( N, k): 

N! 
C(N7 Ic) = k!(N - k)! ’ (4) 

Now consider the number of arrangements of all strings of size N with k l’s were we 
able to distinguish a l-event in spite of its distinctness being defined by context, 
i.e. the distinction between 1 and 1’ is know to us. Then: 

Wl’) # (l’#l) # (#W # (#W (5) 
for counting purposes only. Under this interpretation, the total number of string 
(both d’ t’ g ’ h bl IS m UIS a e and indistinguishable) is just P(N, IC): 

‘(NY ‘) = (/k)! * (6) 

Now, regardless of the number of #‘s in a string, the frequency probability of 
distinguishable strings for fixed N and k is just: 

ww = _r_ 
P(N, k) k! * (7) 

Notice that dependence on N vanishes. 
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Now back to our value for R(N, k, P). Let P be bounded from above by the 
maximum number of distinct l’s to be found in the construction of the sample 
space of strings given by P(N, k). We can now ask the key question. On the 
average and for fixed N, k, and P, what is the number of strings in the population 
of strings constructed by sampling with replacement which are distinguishable in 
the sense given by C(N, Ic)? This number is obviously: 

WC k P> * (8) 

Three points of direction: 

(1) In constructing the transport operator, the increment I is replaced by 
an operator e d/dp since it is, in the general case, dependent on the particular 
parametrization of the coordinate xi. The summation of terms like (8) for all values 
of k from 0 up to some I< leads to the finite exponential. This corresponds to con- 
structing a network of discrete Feynman paths where each real node is represented 
by a 1 and each “imaginary” node is represented by a #. It is a l-dimensional 
discrete Feynman kernel. Note that the #‘s are essential to the statistics. [Aside: 
The transport operator was constructed in non-Euclidean d-space, as were the 
Lorentz transformations-a fact I failed to make explicit in Foundations.] 

(2) When constructing the Dirac, it is essential to note that the P (right 
turns strings) and Q (left turns strings) are constructed independently. They 
are allowed to mesh because of the #‘s in each string which preserve a global 
context or ordering. If the number of distinguishable P and distinguishable Q 
strings is suitably normalized to the population of all possible strings (this will be 
constrained by the physics), then the joint probability of the P and Q strings being 
distinguishable is found by multiplying the independent probabilities. 

(3) A representation of ordering operators which I have been using for some 
time is that of the generator or walk of a directed graph. Any particular directed 
graph can be represented by an N x N transition matrix: all nodes are given 
ordinal labels. There is then one row and one column in the matrix for each node 
and a 1 in a cell represents a connection from the row node to the column node. 
In this context, it is interesting to note that P(N, k 5 N) is the number of sub- 
matrices with exactly one 1 in each of the N rows and exactly one 1 in each of the k 
columns. This completes the mapping from bit-strings to ordering operators and 
simultaneously shows that the permutations correspond to a special orthogonal 
decomposition of all possible ordering operators. 
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